Hebt u iets om te verkopen?

Machine Learning: The Basics by Alexander Jung: New

AlibrisBooks
(462594)
Ingeschreven als zakelijke verkoper
US $74,70
OngeveerEUR 64,31
Objectstaat:
Nieuw
Wees gerust. Retourzendingen worden geaccepteerd.
Verzendkosten:
Gratis Standard Shipping.
Bevindt zich in: Sparks, Nevada, Verenigde Staten
Levering:
Geschatte levering tussen vr, 15 aug en wo, 20 aug tot 94104
De levertijd wordt geschat met onze eigen methode op basis van onder meer de nabijheid van de koper ten opzichte van de objectlocatie, de geselecteerde verzendservice, en de verzendgeschiedenis van de verkoper. De leveringstermijnen kunnen variëren, vooral gedurende piekperiodes.
Retourbeleid:
30 dagen om te retourneren. Koper betaalt voor retourzending Als u een eBay-verzendlabel gebruikt, wordt dit in mindering gebracht op het terugbetalingsbedrag.
Betalingen:
     Diners Club

Winkel met vertrouwen

Geld-terug-garantie van eBay
Ontvang het object dat u hebt besteld of krijg uw geld terug. Meer informatieGeld-terug-garantie van eBay - nieuw venster of tabblad
De verkoper neemt de volledige verantwoordelijkheid voor deze aanbieding.
eBay-objectnummer:403812965341
Laatst bijgewerkt op 01 aug 2025 20:22:01 CESTAlle herzieningen bekijkenAlle herzieningen bekijken

Specificaties

Objectstaat
Nieuw: Een nieuw, ongelezen en ongebruikt boek in perfecte staat waarin geen bladzijden ontbreken of ...
Book Title
Machine Learning: The Basics
Publication Date
2022-01-22
ISBN
9789811681929

Over dit product

Product Identifiers

Publisher
Springer
ISBN-10
9811681929
ISBN-13
9789811681929
eBay Product ID (ePID)
9057254748

Product Key Features

Number of Pages
Xvii, 212 Pages
Language
English
Publication Name
Machine Learning-The Basics
Publication Year
2022
Subject
Intelligence (Ai) & Semantics, Probability & Statistics / General, General, Databases / General
Type
Textbook
Author
Alexander Jung
Subject Area
Mathematics, Computers, Science
Series
Machine Learning: Foundations, Methodologies, and Applications Ser.
Format
Hardcover

Dimensions

Item Weight
18.3 Oz
Item Length
9.3 in
Item Width
6.1 in

Additional Product Features

Dewey Edition
23
Number of Volumes
1 vol.
Illustrated
Yes
Dewey Decimal
006.31
Table Of Content
Introduction.- Components of ML.- The Landscape of ML.- Empirical Risk Minimization.- Gradient-Based Learning.- Model Validation and Selection.- Regularization.- Clustering.- Feature Learning.- Transparant and Explainable ML.
Synopsis
Machine learning (ML) has become a commonplace element in our everyday lives and a standard tool for many fields of science and engineering. To make optimal use of ML, it is essential to understand its underlying principles. This book approaches ML as the computational implementation of the scientific principle. This principle consists of continuously adapting a model of a given data-generating phenomenon by minimizing some form of loss incurred by its predictions. The book trains readers to break down various ML applications and methods in terms of data, model, and loss, thus helping them to choose from the vast range of ready-made ML methods. The book's three-component approach to ML provides uniform coverage of a wide range of concepts and techniques. As a case in point, techniques for regularization, privacy-preservation as well as explainability amount to specific design choices for the model, data, and loss of a ML method., Machine learning (ML) has become a commonplace element in our everyday lives and a standard tool for many fields of science and engineering. To make optimal use of ML, it is essential to understand its underlying principles. This book approaches ML as the computational implementation of the scientific principle. This principle consists of continuously adapting a model of a given data-generating phenomenon by minimizing some form of loss incurred by its predictions. The book trains readers to break down various ML applications and methods in terms of data, model, and loss, thus helping them to choose from the vast range of ready-made ML methods. The book's three-component approach to ML provides uniform coverage of a wide range of concepts and techniques. As a case in point, techniques for regularization, privacy-preservation as well as explainability amount tospecific design choices for the model, data, and loss of a ML method.
LC Classification Number
Q325.5-.7

Objectbeschrijving van de verkoper

Informatie van zakelijke verkoper

Ik verklaar dat al mijn verkoopactiviteiten zullen voldoen aan alle wet- en regelgeving van de EU.
Over deze verkoper

AlibrisBooks

98,6% positieve feedback1,9M objecten verkocht

Lid geworden op mei 2008
Reageert meestal binnen 24 uur
Ingeschreven als zakelijke verkoper
Alibris is the premier online marketplace for independent sellers of new & used books, as well as rare & collectible titles. We connect people who love books to thousands of independent sellers around ...
Meer weergeven

Gedetailleerde verkopersbeoordelingen

Gemiddelde van de afgelopen 12 maanden
Nauwkeurige beschrijving
4.9
Redelijke verzendkosten
5.0
Verzendtijd
5.0
Communicatie
5.0

Feedback verkoper (514.751)

Alle beoordelingen
Positief
Neutraal
Negatief