Afbeelding 1 van 1

Galerij
Afbeelding 1 van 1

Hebt u iets om te verkopen?
Deep Learning by Ian Goodfellow
US $56,95
OngeveerEUR 49,22
Objectstaat:
Goed
Een boek dat is gelezen, maar zich in goede staat bevindt. De kaft is zeer minimaal beschadigd (er zijn bijvoorbeeld slijtplekken), maar er zijn geen deukjes of scheuren. De harde kaft heeft mogelijk geen stofomslag meer. De boekband vertoont minimale slijtage. De meeste bladzijden zijn onbeschadigd. Er zijn weinig vouwen en scheuren en er is vrijwel geen tekst met potlood onderstreept of met een accentueerstift gemarkeerd. Er is niet in de kantlijn geschreven. Er ontbreken geen bladzijden. Bekijk de aanbieding van de verkoper voor de volledige details en een beschrijving van gebreken.
2 beschikbaar
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Verzendkosten:
US $3,99 (ongeveer EUR 3,45) USPS Media MailTM.
Bevindt zich in: Nashville, TN, Verenigde Staten
Levering:
Geschatte levering tussen vr, 8 aug en do, 14 aug tot 94104
Retourbeleid:
30 dagen om te retourneren. Koper betaalt voor retourzending Als u een eBay-verzendlabel gebruikt, wordt dit in mindering gebracht op het terugbetalingsbedrag.
Betalingen:
Winkel met vertrouwen
De verkoper neemt de volledige verantwoordelijkheid voor deze aanbieding.
eBay-objectnummer:394714590978
Specificaties
- Objectstaat
- Publish Year
- 2016
- Book Title
- Deep Learning
- ISBN
- 9780262035613
Over dit product
Product Identifiers
Publisher
MIT Press
ISBN-10
0262035618
ISBN-13
9780262035613
eBay Product ID (ePID)
228981524
Product Key Features
Number of Pages
800 Pages
Language
English
Publication Name
Deep Learning
Publication Year
2016
Subject
Intelligence (Ai) & Semantics, Computer Science
Type
Textbook
Subject Area
Computers
Series
Adaptive Computation and Machine Learning Ser.
Format
Hardcover
Dimensions
Item Height
1.3 in
Item Weight
45.5 Oz
Item Length
9.3 in
Item Width
7.3 in
Additional Product Features
Intended Audience
Trade
LCCN
2016-022992
Reviews
[T]he AI bible... the text should be mandatory reading by all data scientists and machine learning practitioners to get a proper foothold in this rapidly growing area of next-gen technology., [T]he AI bible... the text should be mandatory reading by all data scientists and machine learning practitioners to get a proper foothold in this rapidly growing area of next-gen technology.-- Daniel D. Gutierrez , insideBIGDATA --
Dewey Edition
23
Illustrated
Yes
Dewey Decimal
006.3/1
Synopsis
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. "Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." -Elon Musk , cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors., An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. "Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." --Elon Musk , cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
LC Classification Number
Q325.5.G66 2017
Objectbeschrijving van de verkoper
Over deze verkoper
American Bargains Warehouse
93,3% positieve feedback•217K objecten verkocht
Geregistreerd als particuliere verkoperDus de consumentenrechten die voortvloeien uit EU-wetgeving voor consumentenbescherming zijn niet van toepassing. eBay-kopersbescherming geldt nog steeds voor de meeste aankopen.
Populaire rubrieken in deze winkel
Feedback verkoper (39.591)
- s***t (790)- Feedback gegeven door koper.Afgelopen maandGeverifieerde aankoopFAST SHIPPING
- 6***o (1334)- Feedback gegeven door koper.Afgelopen maandGeverifieerde aankoopGreat, thanks!!!
- x***p (2)- Feedback gegeven door koper.Afgelopen maandGeverifieerde aankoopThank you, fast shipping AAA+++