Deze aanbieding is verkocht op za, 19 jul om 2:54 AM.
Deep Learning Adaptive Computation and Machine Learning series New
Verkocht
Deep Learning Adaptive Computation and Machine Learning series New
US $35,00US $35,00
zo, 20 jul, 02:54zo, 20 jul, 02:54
Hebt u iets om te verkopen?

Deep Learning Adaptive Computation and Machine Learning series New

Mimosa Avenue
(27)
Ingeschreven als zakelijke verkoper
US $35,00
OngeveerEUR 30,13
Objectstaat:
Nieuw
    Verzendkosten:
    US $6,72 (ongeveer EUR 5,79) USPS Media MailTM.
    Bevindt zich in: El Paso, Texas, Verenigde Staten
    Levering:
    Geschatte levering tussen do, 14 aug en ma, 18 aug tot 94104
    De levertijd wordt geschat met onze eigen methode op basis van onder meer de nabijheid van de koper ten opzichte van de objectlocatie, de geselecteerde verzendservice, en de verzendgeschiedenis van de verkoper. De leveringstermijnen kunnen variëren, vooral gedurende piekperiodes.
    Retourbeleid:
    Geen retourzendingen geaccepteerd.
    Betalingen:
         Diners Club

    Winkel met vertrouwen

    Geld-terug-garantie van eBay
    Ontvang het object dat u hebt besteld of krijg uw geld terug. Meer informatieGeld-terug-garantie van eBay - nieuw venster of tabblad
    De verkoper neemt de volledige verantwoordelijkheid voor deze aanbieding.
    eBay-objectnummer:357055974832

    Specificaties

    Objectstaat
    Nieuw: Een nieuw, ongelezen en ongebruikt boek in perfecte staat waarin geen bladzijden ontbreken of ...
    ISBN
    9780262035613

    Over dit product

    Product Identifiers

    Publisher
    MIT Press
    ISBN-10
    0262035618
    ISBN-13
    9780262035613
    eBay Product ID (ePID)
    228981524

    Product Key Features

    Number of Pages
    800 Pages
    Language
    English
    Publication Name
    Deep Learning
    Publication Year
    2016
    Subject
    Intelligence (Ai) & Semantics, Computer Science
    Type
    Textbook
    Subject Area
    Computers
    Author
    Yoshua Bengio, Ian Goodfellow, Aaron Courville
    Series
    Adaptive Computation and Machine Learning Ser.
    Format
    Hardcover

    Dimensions

    Item Height
    1.3 in
    Item Weight
    45.5 Oz
    Item Length
    9.3 in
    Item Width
    7.3 in

    Additional Product Features

    Intended Audience
    Trade
    LCCN
    2016-022992
    Reviews
    [T]he AI bible... the text should be mandatory reading by all data scientists and machine learning practitioners to get a proper foothold in this rapidly growing area of next-gen technology., [T]he AI bible... the text should be mandatory reading by all data scientists and machine learning practitioners to get a proper foothold in this rapidly growing area of next-gen technology.-- Daniel D. Gutierrez , insideBIGDATA --
    Dewey Edition
    23
    Illustrated
    Yes
    Dewey Decimal
    006.3/1
    Synopsis
    An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. "Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." -Elon Musk , cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors., An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. "Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." --Elon Musk , cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
    LC Classification Number
    Q325.5.G66 2017

    Objectbeschrijving van de verkoper

    Informatie van zakelijke verkoper

    Ik verklaar dat al mijn verkoopactiviteiten zullen voldoen aan alle wet- en regelgeving van de EU.
    Over deze verkoper

    Mimosa Avenue

    100% positieve feedback62 objecten verkocht

    Lid geworden op jun 2023
    Reageert meestal binnen 24 uur
    Ingeschreven als zakelijke verkoper

    Feedback verkoper (23)

    Alle beoordelingen
    Positief
    Neutraal
    Negatief
    • 2***k (70)- Feedback gegeven door koper.
      Afgelopen 6 maanden
      Geverifieerde aankoop
      Great seller. Item came as described. Would purchase again.
    • d***l (718)- Feedback gegeven door koper.
      Afgelopen 6 maanden
      Geverifieerde aankoop
      Very pleased with the purchase. Book arrived well packaged and arrived in a timely version. Books are in new condition and very happy with the purchase. Books look great and would definitely buy from the seller again. Great deal.
    • i***a (1545)- Feedback gegeven door koper.
      Vorig jaar
      Geverifieerde aankoop
      Great deal! Fast shipping!